# Lenet5 网络模型
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
class Lenet5(nn.Module): | |
""" | |
for cifar10 dataset. | |
""" | |
def __init__(self): | |
super(Lenet5, self).__init__() | |
self.conv_unit = nn.Sequential( | |
# x: [b, 3, 32, 32] => [b, 16, ] | |
nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=0), | |
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), | |
# | |
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=0), | |
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), | |
# | |
) | |
# flatten | |
# fc unit | |
self.fc_unit = nn.Sequential( | |
nn.Linear(32*5*5, 32), | |
nn.ReLU(), | |
# nn.Linear(120, 84), | |
# nn.ReLU(), | |
nn.Linear(32, 10) | |
) | |
# [b, 3, 32, 32] | |
tmp = torch.randn(2, 3, 32, 32) | |
out = self.conv_unit(tmp) | |
# [b, 16, 5, 5] | |
print('conv out:', out.shape) | |
# # use Cross Entropy Loss | |
# self.criteon = nn.CrossEntropyLoss() | |
def forward(self, x): | |
""" | |
:param x: [b, 3, 32, 32] | |
:return: | |
""" | |
batchsz = x.size(0) | |
# [b, 3, 32, 32] => [b, 16, 5, 5] | |
x = self.conv_unit(x) | |
# [b, 16, 5, 5] => [b, 16*5*5] | |
x = x.view(batchsz, 32*5*5) | |
# [b, 16*5*5] => [b, 10] | |
logits = self.fc_unit(x) | |
# # [b, 10] | |
# pred = F.softmax(logits, dim=1) | |
# loss = self.criteon(logits, y) | |
return logits | |
def main(): | |
net = Lenet5() | |
tmp = torch.randn(2, 3, 32, 32) | |
out = net(tmp) | |
print('lenet out:', out.shape) | |
if __name__ == '__main__': | |
main() |
# ResNet 网络模型
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
class ResBlk(nn.Module): | |
""" | |
resnet block | |
""" | |
def __init__(self, ch_in, ch_out, stride=1): | |
""" | |
:param ch_in: | |
:param ch_out: | |
""" | |
super(ResBlk, self).__init__() | |
# we add stride support for resbok, which is distinct from tutorials. | |
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1) | |
self.bn1 = nn.BatchNorm2d(ch_out) | |
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1) | |
self.bn2 = nn.BatchNorm2d(ch_out) | |
self.extra = nn.Sequential() | |
if ch_out != ch_in: | |
# [b, ch_in, h, w] => [b, ch_out, h, w] | |
self.extra = nn.Sequential( | |
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride), | |
nn.BatchNorm2d(ch_out) | |
) | |
def forward(self, x): | |
""" | |
:param x: [b, ch, h, w] | |
:return: | |
""" | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
# short cut. | |
# extra module: [b, ch_in, h, w] => [b, ch_out, h, w] | |
# element-wise add: | |
out = self.extra(x) + out | |
out = F.relu(out) | |
return out | |
class ResNet18(nn.Module): | |
def __init__(self): | |
super(ResNet18, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0), | |
nn.BatchNorm2d(64) | |
) | |
# followed 4 blocks | |
# [b, 64, h, w] => [b, 128, h ,w] | |
self.blk1 = ResBlk(64, 128, stride=2) | |
# [b, 128, h, w] => [b, 256, h, w] | |
self.blk2 = ResBlk(128, 256, stride=2) | |
# # [b, 256, h, w] => [b, 512, h, w] | |
self.blk3 = ResBlk(256, 512, stride=2) | |
# # [b, 512, h, w] => [b, 1024, h, w] | |
self.blk4 = ResBlk(512, 512, stride=2) | |
self.outlayer = nn.Linear(512*1*1, 10) | |
def forward(self, x): | |
""" | |
:param x: | |
:return: | |
""" | |
x = F.relu(self.conv1(x)) | |
# [b, 64, h, w] => [b, 1024, h, w] | |
x = self.blk1(x) | |
x = self.blk2(x) | |
x = self.blk3(x) | |
x = self.blk4(x) | |
# print('after conv:', x.shape) #[b, 512, 2, 2] | |
# [b, 512, h, w] => [b, 512, 1, 1] | |
x = F.adaptive_avg_pool2d(x, [1, 1]) | |
# print('after pool:', x.shape) | |
x = x.view(x.size(0), -1) | |
x = self.outlayer(x) | |
return x | |
def main(): | |
blk = ResBlk(64, 128, stride=4) | |
tmp = torch.randn(2, 64, 32, 32) | |
out = blk(tmp) | |
print('block:', out.shape) | |
x = torch.randn(2, 3, 32, 32) | |
model = ResNet18() | |
out = model(x) | |
print('resnet:', out.shape) | |
if __name__ == '__main__': | |
main() |
# 模型训练
import torch | |
from torch.utils.data import DataLoader | |
from torchvision import datasets | |
from torchvision import transforms | |
from torch import nn, optim | |
from lenet5 import Lenet5 | |
from resnet import ResNet18 | |
def main(): | |
batchsz = 128 | |
cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([ | |
transforms.Resize((32, 32)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]), download=True) | |
cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True) | |
cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([ | |
transforms.Resize((32, 32)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]), download=True) | |
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True) | |
x, label = iter(cifar_train).next() | |
print('x:', x.shape, 'label:', label.shape) | |
device = torch.device('cuda') | |
# model = Lenet5().to(device) | |
model = ResNet18().to(device) | |
criteon = nn.CrossEntropyLoss().to(device) | |
optimizer = optim.Adam(model.parameters(), lr=1e-3) | |
print(model) | |
for epoch in range(1000): | |
model.train() | |
for batchidx, (x, label) in enumerate(cifar_train): | |
# [b, 3, 32, 32] | |
# [b] | |
x, label = x.to(device), label.to(device) | |
logits = model(x) | |
# logits: [b, 10] | |
# label: [b] | |
# loss: tensor scalar | |
loss = criteon(logits, label) | |
# backprop | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
print(epoch, 'loss:', loss.item()) | |
model.eval() | |
with torch.no_grad(): | |
# test | |
total_correct = 0 | |
total_num = 0 | |
for x, label in cifar_test: | |
# [b, 3, 32, 32] | |
# [b] | |
x, label = x.to(device), label.to(device) | |
# [b, 10] | |
logits = model(x) | |
# [b] | |
pred = logits.argmax(dim=1) | |
# [b] vs [b] => scalar tensor | |
correct = torch.eq(pred, label).float().sum().item() | |
total_correct += correct | |
total_num += x.size(0) | |
# print(correct) | |
acc = total_correct / total_num | |
print(epoch, 'test acc:', acc) | |
if __name__ == '__main__': | |
main() |