# 原理

迁移学习可以通过小数据量样本对模型进行微调,达到针对小数据量数据集更好的拟合效果

# 训练 / 验证 / 测试集伪代码流程

# 代码实战

# 自定义数据集

import  torch
import  os, glob
import  random, csv
from    torch.utils.data import Dataset, DataLoader
from    torchvision import transforms
from    PIL import Image
class Pokemon(Dataset):
    def __init__(self, root, resize, mode):
        super(Pokemon, self).__init__()
        self.root = root
        self.resize = resize
        self.name2label = {} # "sq...":0
        for name in sorted(os.listdir(os.path.join(root))):
            if not os.path.isdir(os.path.join(root, name)):
                continue
            self.name2label[name] = len(self.name2label.keys())
        # print(self.name2label)
        # image, label
        self.images, self.labels = self.load_csv('images.csv')
        if mode=='train': # 60%
            self.images = self.images[:int(0.6*len(self.images))]
            self.labels = self.labels[:int(0.6*len(self.labels))]
        elif mode=='val': # 20% = 60%->80%
            self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
            self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
        else: # 20% = 80%->100%
            self.images = self.images[int(0.8*len(self.images)):]
            self.labels = self.labels[int(0.8*len(self.labels)):]
    def load_csv(self, filename):
        if not os.path.exists(os.path.join(self.root, filename)):
            images = []
            for name in self.name2label.keys():
                # 'pokemon\\mewtwo\\00001.png
                images += glob.glob(os.path.join(self.root, name, '*.png'))
                images += glob.glob(os.path.join(self.root, name, '*.jpg'))
                images += glob.glob(os.path.join(self.root, name, '*.jpeg'))
            # 1167, 'pokemon\\bulbasaur\\00000000.png'
            print(len(images), images)
            random.shuffle(images)
            with open(os.path.join(self.root, filename), mode='w', newline='') as f:
                writer = csv.writer(f)
                for img in images: # 'pokemon\\bulbasaur\\00000000.png'
                    name = img.split(os.sep)[-2]
                    label = self.name2label[name]
                    # 'pokemon\\bulbasaur\\00000000.png', 0
                    writer.writerow([img, label])
                print('writen into csv file:', filename)
        # read from csv file
        images, labels = [], []
        with open(os.path.join(self.root, filename)) as f:
            reader = csv.reader(f)
            for row in reader:
                # 'pokemon\\bulbasaur\\00000000.png', 0
                img, label = row
                label = int(label)
                images.append(img)
                labels.append(label)
        assert len(images) == len(labels)
        return images, labels
    def __len__(self):
        return len(self.images)
    def denormalize(self, x_hat):
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        # x_hat = (x-mean)/std
        # x = x_hat*std = mean
        # x: [c, h, w]
        # mean: [3] => [3, 1, 1]
        mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
        std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
        # print(mean.shape, std.shape)
        x = x_hat * std + mean
        return x
    def __getitem__(self, idx):
        # idx~[0~len(images)]
        # self.images, self.labels
        # img: 'pokemon\\bulbasaur\\00000000.png'
        # label: 0
        img, label = self.images[idx], self.labels[idx]
        tf = transforms.Compose([
            lambda x:Image.open(x).convert('RGB'), # string path= > image data
            transforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),
            transforms.RandomRotation(15),
            transforms.CenterCrop(self.resize),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])
        img = tf(img)
        label = torch.tensor(label)
        return img, label
def main():
    import  visdom
    import  time
    import  torchvision
    viz = visdom.Visdom()
    # tf = transforms.Compose([
    #                 transforms.Resize((64,64)),
    #                 transforms.ToTensor(),
    # ])
    # db = torchvision.datasets.ImageFolder(root='pokemon', transform=tf)
    # loader = DataLoader(db, batch_size=32, shuffle=True)
    #
    # print(db.class_to_idx)
    #
    # for x,y in loader:
    #     viz.images(x, nrow=8, win='batch', opts=dict(title='batch'))
    #     viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
    #
    #     time.sleep(10)
    db = Pokemon('pokemon', 64, 'train')
    x,y = next(iter(db))
    print('sample:', x.shape, y.shape, y)
    viz.image(db.denormalize(x), win='sample_x', opts=dict(title='sample_x'))
    loader = DataLoader(db, batch_size=32, shuffle=True, num_workers=8)
    for x,y in loader:
        viz.images(db.denormalize(x), nrow=8, win='batch', opts=dict(title='batch'))
        viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
        time.sleep(10)
if __name__ == '__main__':
    main()

# 自定义网络模型

import  torch
from    torch import  nn
from    torch.nn import functional as F
class ResBlk(nn.Module):
    """
    resnet block
    """
    def __init__(self, ch_in, ch_out, stride=1):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)
        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                nn.BatchNorm2d(ch_out)
            )
    def forward(self, x):
        """
        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut.
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out
        out = F.relu(out)
        return out
class ResNet18(nn.Module):
    def __init__(self, num_class):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
            nn.BatchNorm2d(16)
        )
        # followed 4 blocks
        # [b, 16, h, w] => [b, 32, h ,w]
        self.blk1 = ResBlk(16, 32, stride=3)
        # [b, 32, h, w] => [b, 64, h, w]
        self.blk2 = ResBlk(32, 64, stride=3)
        # # [b, 64, h, w] => [b, 128, h, w]
        self.blk3 = ResBlk(64, 128, stride=2)
        # # [b, 128, h, w] => [b, 256, h, w]
        self.blk4 = ResBlk(128, 256, stride=2)
        # [b, 256, 7, 7]
        self.outlayer = nn.Linear(256*3*3, num_class)
    def forward(self, x):
        """
        :param x:
        :return:
        """
        x = F.relu(self.conv1(x))
        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)
        # print(x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)
        return x
def main():
    blk = ResBlk(64, 128)
    tmp = torch.randn(2, 64, 224, 224)
    out = blk(tmp)
    print('block:', out.shape)
    model = ResNet18(5)
    tmp = torch.randn(2, 3, 224, 224)
    out = model(tmp)
    print('resnet:', out.shape)
    p = sum(map(lambda p:p.numel(), model.parameters()))
    print('parameters size:', p)
if __name__ == '__main__':
    main()

# 从零开始训练

import  torch
from    torch import optim, nn
import  visdom
import  torchvision
from    torch.utils.data import DataLoader
from    pokemon import Pokemon
from    resnet import ResNet18
batchsz = 32
lr = 1e-3
epochs = 10
device = torch.device('cuda')
torch.manual_seed(1234)
train_db = Pokemon('pokemon', 224, mode='train')
val_db = Pokemon('pokemon', 224, mode='val')
test_db = Pokemon('pokemon', 224, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
                          num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
viz = visdom.Visdom()
def evalute(model, loader):
    model.eval()
  
    correct = 0
    total = len(loader.dataset)
    for x,y in loader:
        x,y = x.to(device), y.to(device)
        with torch.no_grad():
            logits = model(x)
            pred = logits.argmax(dim=1)
        correct += torch.eq(pred, y).sum().float().item()
    return correct / total
def main():
    model = ResNet18(5).to(device)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criteon = nn.CrossEntropyLoss()
    best_acc, best_epoch = 0, 0
    global_step = 0
    viz.line([0], [-1], win='loss', opts=dict(title='loss'))
    viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
    for epoch in range(epochs):
        for step, (x,y) in enumerate(train_loader):
            # x: [b, 3, 224, 224], y: [b]
            x, y = x.to(device), y.to(device)
        
            model.train()
            logits = model(x)
            loss = criteon(logits, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            viz.line([loss.item()], [global_step], win='loss', update='append')
            global_step += 1
        if epoch % 1 == 0:
            val_acc = evalute(model, val_loader)
            if val_acc> best_acc:
                best_epoch = epoch
                best_acc = val_acc
                torch.save(model.state_dict(), 'best.mdl')
                viz.line([val_acc], [global_step], win='val_acc', update='append')
    print('best acc:', best_acc, 'best epoch:', best_epoch)
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt!')
    test_acc = evalute(model, test_loader)
    print('test acc:', test_acc)
if __name__ == '__main__':
    main()

# 迁移学习

import  torch
from    torch import optim, nn
import  visdom
import  torchvision
from    torch.utils.data import DataLoader
from    pokemon import Pokemon
# from    resnet import ResNet18
from    torchvision.models import resnet18
from    utils import Flatten
batchsz = 32
lr = 1e-3
epochs = 10
device = torch.device('cuda')
torch.manual_seed(1234)
train_db = Pokemon('pokemon', 224, mode='train')
val_db = Pokemon('pokemon', 224, mode='val')
test_db = Pokemon('pokemon', 224, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
                          num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
viz = visdom.Visdom()
def evalute(model, loader):
    model.eval()
  
    correct = 0
    total = len(loader.dataset)
    for x,y in loader:
        x,y = x.to(device), y.to(device)
        with torch.no_grad():
            logits = model(x)
            pred = logits.argmax(dim=1)
        correct += torch.eq(pred, y).sum().float().item()
    return correct / total
def main():
    # model = ResNet18(5).to(device)
    trained_model = resnet18(pretrained=True)
    model = nn.Sequential(*list(trained_model.children())[:-1], #[b, 512, 1, 1]
                          Flatten(), # [b, 512, 1, 1] => [b, 512]
                          nn.Linear(512, 5)
                          ).to(device)
    # x = torch.randn(2, 3, 224, 224)
    # print(model(x).shape)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criteon = nn.CrossEntropyLoss()
    best_acc, best_epoch = 0, 0
    global_step = 0
    viz.line([0], [-1], win='loss', opts=dict(title='loss'))
    viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
    for epoch in range(epochs):
        for step, (x,y) in enumerate(train_loader):
            # x: [b, 3, 224, 224], y: [b]
            x, y = x.to(device), y.to(device)
            model.train()
            logits = model(x)
            loss = criteon(logits, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            viz.line([loss.item()], [global_step], win='loss', update='append')
            global_step += 1
        if epoch % 1 == 0:
            val_acc = evalute(model, val_loader)
            if val_acc> best_acc:
                best_epoch = epoch
                best_acc = val_acc
                torch.save(model.state_dict(), 'best.mdl')
                viz.line([val_acc], [global_step], win='val_acc', update='append')
    print('best acc:', best_acc, 'best epoch:', best_epoch)
    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt!')
    test_acc = evalute(model, test_loader)
    print('test acc:', test_acc)
if __name__ == '__main__':
    main()

# 工具函数

from    matplotlib import pyplot as plt
import  torch
from    torch import nn
class Flatten(nn.Module):
    def __init__(self):
        super(Flatten, self).__init__()
    def forward(self, x):
        shape = torch.prod(torch.tensor(x.shape[1:])).item()
        return x.view(-1, shape)
def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
        plt.title("{}: {}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()